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Abstract: Several risk management strategies are integrated into today’s intelligent vehicles to
guarantee safety. To be efficient, these strategies must handle the uncertainty propagation into
the navigation process. For a more reliable risk management, this work presents a novel set-
membership over-approximation of the Time-To-Collision (TTC), which fits a vehicle following
scenario. The interval analysis is used to consider different uncertainty sources with respects
to surrounding measurement conditions. For optimization aims, statistical properties of the
measurements, which are based on the correlation evolution, are employed to avoid conservative
results. It is assumed that the vehicle dynamics and correspondingly the correlation between
measurements cannot drastically change in a short time horizon. Accordingly, the amount
of uncertainty assigned to each measurement, evaluated per interval, is decreased. This fact
prohibits irregularities in the correlation relating variables. The proposed risk management
approach is integrated into the architecture of an Adaptive Cruise Control (ACC). Simulation
results prove the overall risk management efficiency and its ability to handle uncertainties.

Keywords: Intelligent transportation systems, risk management, time to collision, interval
analysis, correlation, uncertainty, adaptive cruise control.

1. INTRODUCTION

Over the last decade, the need to improve mobility has en-
tailed a great evolution in Intelligent Transportation Sys-
tems (ITS). Accordingly, modern cars have been equipped
with various collision avoidance systems. Due to the crit-
ical operational context of such mechanisms, ensuring the
road safety has become as a major concern for the ITS
community. Based on Naufal et al. (2018), it is mandatory
to involve hazards into the decision-making level of the col-
lision avoidance systems. For this purpose, numerous prob-
abilistic methods have been practiced to achieve threats
analysis. As shown in Noh and An (2018), it is frequent
to use the Bayesian Networks as a risk-sensitive decisional
strategy. Iberraken et al. (2018) have proposed a multi-
level Bayesian Decision Network to handle lane change
maneuvers. The latter is utilized for situation assessment
in highways and safety verification of the performed ma-
neuver. Under different urban traffic situations, Funfgeld
et al. (2017) have developed Monte Carlo simulations to
select a safe maneuver. To carry a crash-free lane change,
fault tree analysis has been adopted by Park et al. (2018).

A considerable limitation of these techniques is being
sensitive to the modeling and the evaluation of the un-
certainties. Generally, hazard analyses are built based on
probabilistic prediction. This forecasting relies on assess-
ing the chance of an event manifestation, which may mis-
match the reality. Correspondingly, the prediction step is
usually enhanced by using safety indicators. Through real
measurements, these indictors make the forecasting closer

to reality to succeed the hazard prediction. Systematically,
the risk assessment efficiency depends on the safety indica-
tor accuracy. In particular, the Time To Collision (TTC)
estimation as a hazard indicator is the most widespread,
see Chen et al. (2018) and Iberraken et al. (2018).

The TTC calculation has been carried out in a stochas-
tic manner. It has been conjoined with a model-based
prediction of the vehicle future trajectories. The crash
occurrence probability was calculated according to this
model findings, see Tan and Huang (2006). The main
drawback presented by this stochastic TTC is being esti-
mated through uncertain vehicle dynamics. For the sake of
accuracy, more interest has been focalized on deterministic
rules. Vehicle speeds have been assumed to be constant
during a short time horizon. In that way, the TTC is
roughly defined as the ratio between the distance separat-
ing two vehicles and their relative velocity. Currently, great
efforts are being made to reach an accurate formalization
of the TTC. For more details, readers are referred to
Hou et al. (2014). Practical solutions to make ITS risk
management approaches more accurate are highly needed.
To handle this issue, the majority of researches attempt
to ameliorate risk indicators precision by decreasing un-
certainty in measurements. Several stochastic/statistical
approaches have been practiced for this aim. However,
these methods have poor performances when the studied
system is unwell conditioned. As an example, for Kalman
filters, a very careful characterization of uncertainties and
accurate knowledge for the system initial state are re-
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quired, see Nicola and Jaulin (2018). In the opposite case,
good measurements may be rejected and considered as
outliers. After all, these stochastic/statistical methods are
sensitive to non-linearity, see Wang et al. (2018). Moreover,
the measurement noise is assumed to be of a particular
probability distribution e.g., Gaussian distribution. This
assumption does not always hold.

In this paper, a novel set-membership extension for the
TTC is proposed. To the best of the author’s knowledge,
this is the first TTC extension, which handles interval
data. Its key contribution lies in incorporating the uncer-
tainty propagation into the collision prediction. It assures
a TTC approximation strongly robust to measurement un-
certainty and communication latencies. Furthermore, the
proposed approach includes a statistical optimization step.
The evolution of the correlation between measurements
has been monitored. This characterization of correlation
serves to narrow interval-measurements, which are used
for the TTC approximation. Together, the set-membership
approach and the correlation characterization compromise
between safety and optimality to present a guaranteed
assessment of the TTC. The suggested risk management
approach has been tested on an Adaptive Cruise Control
(ACC) system, see Dahmane et al. (2018).

The remaining of this paper is organized as follows: Section
2 explains the adopted uncertainty assessment strategy for
the navigation process. Section 3 details the optimization
step in the uncertainty estimation and introduces the novel
set-membership TTC computation algorithm. Section 4
describes the integration of the proposed risk management
approach into an ACC architecture. Section 5 illustrates
the realized simulation work and interpret the obtained re-
sults. Section 6 summarizes this paper main contributions
and discusses future work.

2. SET-MEMBERSHIP TTC FORMALIZATION AND
UNCERTAINTY QUANTIFICATION STRATEGY

For a car following scenario, a precise TTC formalization
is given by the standard equation of motion, describing
the displacements between the follower and leader. In our
case of study, the navigation dynamics are provided by
sensor measurements and inter-vehicular communication.
Consider two vehicles i and j with vector positions and
velocities of: pi, pj , Vi and Vj . Here, i and j are respectively
the in-front vehicle “leader” and the ACC-equipped vehicle
“follower” (cf. Figure 2). Henceforth, the follower velocity
Vj is considered exact and non uncertainty is associated to
this variable. The ACC is assumed to acquire the Vi with
a Vehicle-to-Vehicle (V2V) data exchange. Hence, Ward
et al. (2015) have proved that the rate of change in the

separation between i and j, denoted ḋij , is expressed as:

ḋij =
1

dij
(pi − pj)

T (Vi − Vj) (1)

Where dij is the measured inter-distance separating i and
j. Thus, Ward et al. (2015) have derived the TTC value
from equation (1):

TTC = −dij
ḋij

(2)

Obviously, the above generalized approach of TTC esti-
mation does not consider the uncertainty impact on the

observations. This paper main contribution is introducing
a novel set-membership TTC extension. It takes into ac-
count latencies and the uncertainty propagation into the
navigation process. Usually, complex stochastic techniques
are developed to estimate the uncertainty propagation in
a given process. However, these methods reliability stills
for yet a vast controversial issue due to their probabilistic
nature, see Nicola and Jaulin (2018). As an alternative,
interval analysis is used in this work, see Jaulin et al.
(2001). The information inaccuracy is handled thanks to a
prior knowledge of the uncertainty amounts affecting data.
Accordingly, the natural representation of data is extended
to intervals. The mathematical operations (+,−, ∗, /) are
also extended to intervals to assess the uncertainty evo-
lution all along any algorithm. The set-membership com-
putation is assumed as guaranteed and reliable since the
exact value of data is enclosed inside an interval bounds.
In what follows, [x] = [x, x] denotes a real interval, where
x and x are respectively its lower and upper bounds. The
width associated to [x] underlines the uncertainty extent.

To extend the TTC approximation to intervals, it is
mandatory in a first step to construct a relevant strategy
to define measurement bounds. A cause-effect relationship
between uncertainty sources and interval widths must be
established. In the sequel, the uncertainty is properly eval-
uated referring to the following categories:
a) Factors related to the communication and the
surrounding environment: Multiple conditions empha-
size the uncertainty impact on the performances of the
vehicle’s sensing tools. Nowadays, the vehicular connec-
tivity enhances the in-road safety through wireless com-
munication as the Dedicated Short Range Communication
(DSRC). For this reason, a great focus is given in this sec-
tion to analyse the DSRC latency. In particular, a recent
research, conducted by Dey et al. (2016), has investigated
this issue through in-field tests. It has been proven that
the V2V message delivery time increases relatively to the
vehicle speed. Otherwise, the communication latency is
related to the number of vehicles present in the car nearby.
Since more vehicles transmit messages, communication
conflicts invoke extra-latency. Correspondingly, Tables 1
and 2 illustrate the experimentally derived upper and
lower limits of the DSRC latency, see Dey et al. (2016). The
uncertainty amounts affecting the V2V communication-
issued data are recognized based on these results.

Table 1. DSRC latency at different speeds

Vehicle speed (m/s) Minimum Maximum
latency (ms) latency (ms)

9 89.35 89.39

15 93.35 93.84

22 96.10 96.16

31 101.47 101.54

Table 2. DSRC latency at different number of
vicinity vehicles

Neighborhood vehicles Minimum Maximum
number latency (ms) latency (ms)

10 35.47 35.54

20 50.66 50.70

30 66.63 66.66
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From now, [TV 2V ] designates the interval characterizing
the aforementioned V2V latencies. Hence, the position-
ing tools accuracy depends on the satellites masking and
signals attenuation. In this work, it is supposed that a
signal strength indicator associated to the navigation road
section is available. The uncertainty impacting the posi-
tioning are fixed relatively to this indicator. Besides, the
measurement of vehicles inter-distance is prone to impor-
tant uncertainty. To cover the measurement imperfections,
a 1% of uncertainty is admitted on the inter-distance. Fi-
nally, all the exchanged data through V2V communication,
such as Vi, are assumed erroneous with a range of 0.5% due
to the leader measurement imprecision.
b) Vehicle internal factors: Uncertainties may result
from the intra-vehicle latencies, which slowdown the ve-
hicle response to threats. Foremost, it includes: sensors
update time and the required time for data propagation
through the automotive embedded system. These param-
eters are fixed by the designer depending on the con-
cerned vehicle characteristics. Before proceeding further,
let denote [TL] as a predefined interval associated to such
latencies.

Obviously, it is judicious to subtract [TV 2V ] and [TL]
from the TTC value since these latencies may increase
in unpredicted way a given situation criticality. Under
this assumption, equation (3) introduces the TTC set-
membership final shape:

[TTC] = − [dij ]

[ḋij ]
− [TV 2V ] − [TL] (3)

The above formalization takes precautions against all po-
tential uncertainties. The TTC approximation is corre-
lated with the risk influencing factors and parameters that
govern the uncertainty evolution. Furthermore, it is robust
to vehicular communication latencies.

3. CORRELATION-BASED OPTIMIZATION STEP

The previous section has detailed how to appropriately
pick-up a TTC over-approximation. Clearly, admitting the
worst-case of risk and a maximum level of uncertainty,
is the safest decision. However, a too conservative risk-
management degrades the navigation performances. The
worst case of risk manifestation definitely mismatches the
reality. To overstep this limitation, an optimization step is
joined to the initially suggested TTC over-approximation.
It exploits the historical characterization of the data struc-
ture to ensure more optimistic results of TTC. To reach
this goal, our approach relies on the real-time monitoring
of the correlation. The concept of the correlation has been
widely employed for reliability models and diagnosis. The
real-time monitoring of the correlation and the charac-
terization of system variable’s dependencies are highly
efficient in this context. A system correct behavior is
proven by a smooth transition in the correlation states,
see Xia et al. (2017). Especially in a short sampling-time
step, the correlation changes suddenly in a drastic way
only in presence of anomalies. Anomalies include faulty or
aberrant measurements, modification in noises statistical
features, deep change in the control process, etc. This is
the case for the navigation process studied in this paper. A
sudden change in the vehicle dynamics or in the environ-
mental conditions is generally unrealistic in a very short

time horizon. Correspondingly, the real-time supervision
of the correlation is adopted in this work. It prohibits
modification in the correlation real structure due to the
uncertainty attributed to each interval of measurements.
Interval widths are reduced progressively to guarantee a
minor fluctuation on the correlation between successive
instants tk−1 and tk. In this regard, a more realistic predic-
tion of the uncertainty evolution is reached while balancing
between utility and safety.

Mainly, the correlation has been developed to perform
dependency analysis of single-valued variables:

CX,Y |k =
COVX,Y |k

σXσY
(4)

Note that CX,Y |k is the correlation factor between two
variables X and Y at instant tk. COVX,Y |k is the covari-
ance associated to X and Y . σX and σY are respectively
their variances. In this paper, the vertices transformation
is utilized as symbolic manner to represent interval data.
In previous work, we have used this transformation to
extend a diagnosis approach to intervals, see Lakhel et al.
(2016) and Gueddi et al. (2017). However, this method has
not been yet applied to study the uncertainty propagation
into a risk management process. Consider an interval data
matrix XI , which is built by N observations describing m
interval-valued variables [xi|i=1..m]:

XI =


[
x1(1), x1(1)

]
· · ·

[
xm(1), xm(1)

]
...

. . .
...[

x1(N), x1(N)
]
· · ·

[
xm(N), xm(N)

]
 (5)

The vertices method provides an equivalent single-valued
matrix for XI with the same data structure. All the ver-
tices (min/max bounds of intervals) are implied to define
a new single-valued matrix, denoted XH . Geometrically,
all m intervals and N observations represent a hyper-
rectangle of 2m vertices. Thus, XH is constructed from
N × 2m rows and m columns:

XH =



x1(1) · · · xm(1)
...

. . .
...

x1(1) · · · xm(1)


...x1(N) · · · xm(N)

...
. . .

...

x1(N) · · · xm(N)




(6)

Consider X and Y two variables that represent each time
two distinct columns from the XH . In such a manner,
COVX,Y |k is computed by the mean of several sample
measurements of X and Y . The vertices transformations
depends exponentially on the variables number m and
linearly on the observations number N . In this work, the
correlation is assessed separately between two variables,
which means m = 2. Thus, the vertices transformation,
in our case of study, does not imply any computational
complications. Figure 1 illustrates the application of this
technique in this work.

Once the equivalent single-valued data are obtained, it is
possible to proceed the correlation assessment. The uncer-
tainty minimization is done at each sampling step for each
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Fig. 1. Vertices technique applied to estimate correlation

couple of variables intervening in the TTC calculation.
With each newly incoming set of interval observations,
the correlation assessment is done with previous measure-
ments samples. The interval, having the largest width,
is targeted by the minimization. After that, the vertices
transformations is applied and the gap in the correlation
between instants tk and tk−1 is obtained. The uncertainty
reduction is aborted at two conditions:
Condition 1: When the gap in the correlation between
two instants tk−1 and tk decreases from an iteration to
another and suddenly it begins to increase. This fact means
that the concerned interval was tightened as much as
possible. More reduction in the interval width will entail
undesired modification in the data proper distribution.
Condition 2: When the gap in the correlation between
two instants tk−1 and tk exceeds the minimum variation of
correlation noticed in the system nominal behavior. This
latter is characterized through off-line simulations.

Finally, algorithm 1 summarizes the optimized TTC over-
approximation process.

Algorithm 1: TTC optimized over-approximation

Input : pi, pj , Vi, Vj , di,j and [TL].
Output: [TTC].

while Navigation process is running do
-Estimate [TV 2V ], [di,j ], [Vi], [pi] and [pj ] according to
the measurement conditions (cf. Section 2).

for each couple of variables between tk−1 and tk do
repeat

-Apply the vertices technique (cf. Section 3).
-Calculate the correlation factor at instant tk
(see equation (4)).

-Estimate the gap in the correlation between
instants tk and tk−1:
CX,Y |k − CX,Y |k−1

until Condition 1 or Condition 2 is satisfied
end
-Calculate the [TTC] (see equation (3))

end

4. SET-MEMBERSHIP RISK MANAGEMENT
INTEGRATION INTO AN ACC ARCHITECTURE

The current section describes the integration of the sug-
gested TTC approximation method into the risk man-
agement layout of an ACC. Basically, the studied ACC
operation is arranged by switching between two modes:
Cruise Control (CC) Mode: If the closest car to the
host vehicle is too far, the ACC system triggers a dynamic
target reaching. This target is pointed out according to a

user predefined speed.
Adaptive Cruise Control Mode: The presence of ve-
hicles in the host car vicinity activates the ACC mode. It
maintains a reference distance, denoted dref , from the ve-
hicle ahead. Indeed, a safe target enclosure is derived after
appropriately calculating [dref ] with interval arithmetic.
[dref ] represents the distance between the zero distance
(from the leader position) and the value varying between
dref and dref . Figure 2 illustrates the proposed ACC.

Fig. 2. Proposed ACC system principle

To ensure the aforementioned modes, a particular multi-
controller architecture (see Adouane (2016)), which is en-
hanced by a risk management module, is designed. As
shown in Figure 2, the ACC acquires the required infor-
mation by the V2V communication and the localization
tools. At this moment, the “uncertainty assessment block”
checks the measurement conditions and transforms all the
data to intervals. Once interval measurements are ob-
tained, the correlation supervision step begins. The initial
interval measurements are tightened to permit a more
compact [TTC] estimation. Depending on the obtained
results, the suitable mode is selected. If the ACC mode is
activated, the “target selection block” makes an optimal
and safe choice of the target set-point. By admitting the
upper bound of the reference distance dref , the selected
target ensures a greater TTC and more of safety. Let
denote by [T̃ ] the time to travel [dref ]. A key component

parameter, which should be considered to define [T̃ ] and
respectively [dref ] is the host vehicle time-to-stop. Under
critical circumstance as a follower hard breaking, the ACC-
equipped vehicle requires a short period of time [Tbre] to
accomplish a full breaking. [Tbre] is computed by equation
(7), where a is the vehicle deceleration rate. For simplicity,
a is assumed to be a constant interval.

[Tbre] = Vj/[a] (7)

Hence, [T̃ ] and [dref ] must satisfy the following relations:

[T̃ ] = [Tbre] + [Tmin] (8)

[dref ] = [T̃ ] × ([V i] − V j) (9)

Note that [Tmin] is a predefined minimum safety temporal
distance. Accordingly, the follower navigation is assumed
to be safe under the condition that dref is utilized to
define the target set-point. It should be noted that the
target selection strategy is neither too conservative, nor
optimistic thanks to the correlation supervision step. Fi-
nally, a control unit allows reaching the selected target
with a desired velocity. More details about the adopted
ACC architecture are illustrated in Figure 3.
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Fig. 3. Control architecture of interval analysis-based ACC

5. SIMULATION SETUPS AND RESULTS

To validate the proposed risk-management schema, simu-
lation results are presented in this section. Test scenarios
have been developed on a Matlab 2D autonomous navi-
gation simulator. INTLAB, which is a reliable computing
package, has been used to ensure the interval computation,
see Rump (1999). A model of a highway-road segment has
been selected as the test-scene. All the vehicles involved
in simulations are modeled using tricycle kinematic. More
details about the configurations and setups used for testing
are shown in Table 3:

Table 3. Simulation setups

Parameter Value

Sampling step 0.1 (s)

Sensors update time 0.01 (s)

Follower Embedded system delay 0.025 (s)

Leader maximum velocity 22.2 (m/s)

Follower maximum velocity 23 (m/s)

In a first test scenario, a white gaussian noise is injected
in the navigation process exact measurements. Hence, the
risk assessment is tackled through several ways of the TTC
estimation. Figure 4 compares results of the proposed set-
membership TTC before/after proceeding the optimiza-
tion step. In addition to outputs of the proposed set-
membership TTC, Figure 5 exhibits results of the exact
TTC (obtained through equation (2)), which is approxi-
mated without injecting any noise to the measurements.

Aside from the difference in the uncertainty level, the
overall results show the same global behavior. The sim-
ulation starts with an initial inter-distance of 9.5m, sep-
arating the ACC-equipped vehicle and an in-front car.
Thus, the follower approaches steadily to the leader. The
remaining time to collision is steadily dropping relatively
to the decrease in the inter-distance. After few seconds,
the inter-distance as well as the TTC are approxima-
tively maintained stable since the ACC system ensures
the respect of a reference distance. Several fluctuations
in the presented results are entailed by the jerk i.e., a non
smooth change in motion due to sudden bounding between
acceleration/deceleration. This latter is not considered in
this work.

As illustrated in Figure 4, the supervision of the cor-
relation has effectively diminished the TTC uncertainty
extent. Compared to the TTC initial over-approximation,
the optimization step has provided a widely more opti-
mistic risk prediction. The initial TTC enclosure has been

Fig. 4. TTC enclosures with/without the optimization step

Fig. 5. TTC enclosures compared with exact results

reduced with average range of 60.4%. More importantly,
Figure 5 shows that the exact TTC values are perfectly
enclosed between the introduced set-membership TTC
bounds. This fact means that the upper/lower security
threshold values have been appropriately defined by the
interval-based risk management approach.

To interpret in a better way the proposed approach ap-
titudes in handling the uncertainty, another test scenario
is tackled. More sever uncertainty amounts are injected
in the simulation measurements at different periods (P1,
P2, P3 and P4). Uncertainties of 0.03 m/s, 0.06 m/s, 0.12
m/s and 0.18 m/s have been respectively injected for
these periods in Vi. In practice, such uncertainties may be
entailed by erroneous V2V communication or faulty sensor
behaviors. Figure 6 illustrates this test-scenario results.

Fig. 6. Results with high uncertainty injection

Results of the deterministic TTC calculation (obtained us-
ing single-valued noisy measurements) are compared with
the interval-based results. With respect to the vehicle’s rel-
ative velocity, Table 4 illustrates the error in the reference
distance given by each method relatively to the real dref
that must be kept between vehicles.

The obtained results prove the efficiency of the proposed
risk management strategy. The risk has been entirely
mastered or at least considerably mitigated. Contrarily
to existent approaches, the proposed interval-based un-
certainty characterization method does not require any
linearization. It allows also the risk management level to
appropriately define min/max security thresholds.
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Table 4. Error impacting dref

P1 P2 P3 P4

Average of error in
dref for deterministic -0.385 -0.631 -1.435 -2.753

computing (m)

Average of error in
dref for set-membership +0.324 +0.171 -0.319 -0.833

computing (m)

6. CONCLUSION

This paper introduced a novel TTC interval extension. A
set-membership risk management has been developed for
an ACC system to face the uncertainty related challenges.
The idea behind the proposed extension is to assess the risk
with respect to the navigation surrounding environment.
The vehicular communication latencies have been also
considered. To avoid too conservative results, the uncer-
tainty assigned to each measurement evaluated per interval
has been reduced by monitoring the correlation between
variables. Further, the obtained uncertainty amounts are
implied explicitly on the TTC computation. Through the
set-membership computation, the threats worst-case anal-
ysis is allowed. Relatively to the worst-cases of risk, the
ACC control units maintains a safe and optimistic refer-
ence distance to an in-front vehicle. The efficiency of our
proposition is validated through simulation results.

As a future work, the proposed approach should be inte-
grated on a real vehicle. In addition, the set-membership
TTC should be extended to cover more critical in-road
maneuvers such as lane change.
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